A345462 Triangle T(n,k) (n >= 1, 0 <= k <= n-1) read by rows: number of distinct permutations after k steps of the "first transposition" algorithm.
1, 2, 1, 6, 3, 1, 24, 13, 4, 1, 120, 67, 23, 5, 1, 720, 411, 146, 36, 6, 1, 5040, 2921, 1067, 272, 52, 7, 1, 40320, 23633, 8800, 2311, 456, 71, 8, 1, 362880, 214551, 81055, 21723, 4419, 709, 93, 9, 1, 3628800, 2160343, 825382, 224650, 46654, 7720, 1042, 118, 10, 1
Offset: 1
Examples
Triangle begins: 1; 2, 1; 6, 3, 1; 24, 13, 4, 1; 120, 67, 23, 5, 1; 720, 411, 146, 36, 6, 1; 5040, 2921, 1067, 272, 52, 7, 1; 40320, 23633, 8800, 2311, 456, 71, 8, 1; ...
References
- D. E. Knuth, The Art of Computer Programming, Vol. 3 / Sorting and Searching, Addison-Wesley, 1973.
Links
- Alois P. Heinz, Rows n = 1..150, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, k) option remember; (k+1)!* binomial(n, k)*add((-1)^i/i!, i=0..k+1)/n end: T:= proc(n, k) option remember; `if`(k=0, n!, T(n, k-1)-b(n, n-k+1)) end: seq(seq(T(n, k), k=0..n-1), n=1..10); # Alois P. Heinz, Aug 11 2021
-
Mathematica
b[n_, k_] := b[n, k] = (k+1)!*Binomial[n, k]*Sum[(-1)^i/i!, {i, 0, k+1}]/n; T[n_, k_] := T[n, k] = If[k == 0, n!, T[n, k-1] - b[n, n-k+1]]; Table[Table[T[n, k], {k, 0, n - 1}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Mar 06 2022, after Alois P. Heinz *)
Formula
T(n,0) = n!; T(n,n-3) = (3*(n-1)^2 - n + 3)/2.
From Alois P. Heinz, Aug 11 2021: (Start)
T(n,k) = T(n,k-1) - A010027(n,n-k) for k >= 1.
T(n,k) - T(n,k+1) = A123513(n,k).
T(n,0) - T(n,1) = A000255(n-1) for n >= 2.
T(n,1) - T(n,2) = A000166(n) for n >= 3.
T(n,2) - T(n,3) = A000274(n) for n >= 4.
T(n,3) - T(n,4) = A000313(n) for n >= 5. (End)
Comments