A345466 a(n) = Product_{k=1..n} binomial(n, floor(n/k)).
1, 1, 2, 9, 96, 1250, 64800, 1764735, 224788480, 22499086176, 6123600000000, 408514437465750, 1308805762115174400, 133962125607455951520, 99335199198879310098432, 113040832521732593994140625, 425230288403106927476736000000, 72623663171934137824096600064000
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..160
Programs
-
Magma
[n eq 0 select 1 else (&*[Binomial(n,Floor(n/j)): j in [1..n]]): n in [0..30]]; // G. C. Greubel, Feb 05 2024
-
Mathematica
Table[Product[Binomial[n, Floor[n/k]], {k, 1, n}], {n, 0, 20}] Table[Product[((n + 1)/k - 1)^Floor[n/k], {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 24 2021 *)
-
SageMath
[product(binomial(n,(n//j)) for j in range(1,n+1)) for n in range(31)] # G. C. Greubel, Feb 05 2024
Formula
log(a(n)) ~ n * log(n)^2 / 2. - Vaclav Kotesovec, Jun 21 2021
a(n) = Product_{k=1..n} ((n+1)/k - 1)^floor(n/k). - Vaclav Kotesovec, Jun 24 2021