A345472 Emirps p such that both p and its reversal are sums of three consecutive primes.
1151, 1249, 1511, 3467, 3697, 7643, 7963, 9421, 11593, 32749, 36467, 39511, 71329, 76463, 92317, 94723, 110119, 111109, 123707, 124309, 124823, 128377, 141371, 146953, 150383, 155153, 160159, 164291, 167779, 173141, 178223, 184609, 190807, 192383, 192461, 199247, 304193, 304879, 306133, 322871
Offset: 1
Examples
a(4) = 1511 because 1511 and its reversal 1151 are distinct primes, and 1511 = 499+503+509 and 1151 = 379+383+389 are sums of three consecutive primes.
Links
- Robert Israel, Table of n, a(n) for n = 1..1792
Programs
-
Maple
digrev:= proc(n) local L, i; L:= convert(n, base, 10); add(L[-i]*10^(i-1), i=1..nops(L)) end proc:P:= select(isprime, [2,seq(i,i=3..nextprime(nextprime(333333)),2)]): P3:= convert(select(isprime,P[1..-3]+P[2..-2]+P[3..-1]),set): B:= P3 intersect map(digrev,P3): sort(convert(remove(t -> digrev(t)=t,B),list);
Comments