A345482 Numbers that are the sum of seven squares in five or more ways.
45, 54, 55, 57, 58, 60, 61, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117
Offset: 1
Keywords
Examples
54 = 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 4^2 + 5^2 = 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 6^2 = 1^2 + 1^2 + 3^2 + 3^2 + 3^2 + 3^2 + 4^2 = 1^2 + 2^2 + 2^2 + 2^2 + 3^2 + 4^2 + 4^2 = 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 5^2 so 54 is a term.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..1000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**2 for x in range(1, 1000)] for pos in cwr(power_terms, 7): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 5]) for x in range(len(rets)): print(rets[x])
Formula
Conjectures from Chai Wah Wu, Apr 25 2024: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 13.
G.f.: x*(-x^12 + x^11 - x^10 + x^9 - x^8 + x^7 - x^6 + x^5 - x^4 + x^3 - 8*x^2 - 36*x + 45)/(x - 1)^2. (End)