A345510 Numbers that are the sum of ten squares in three or more ways.
34, 37, 40, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104
Offset: 1
Keywords
Examples
37 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 5^2 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 3^2 + 3^2 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2 = 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 so 37 is a term.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**2 for x in range(1, 1000)] for pos in cwr(power_terms, 10): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 3]) for x in range(len(rets)): print(rets[x])
Formula
From Chai Wah Wu, May 09 2024: (Start)
All integers >= 48 are terms. Proof: since 29 can be written as the sum of 5 positive squares in 3 ways and any integer >= 34 can be written as a sum of 5 positive squares (see A025429), any integer >= 63 can be written as a sum of 10 positive squares in 3 or more ways. Integers from 48 to 62 are terms by inspection.
a(n) = 2*a(n-1) - a(n-2) for n > 9.
G.f.: x*(-x^8 + x^7 - x^6 + x^5 - x^4 - x^3 - 31*x + 34)/(x - 1)^2. (End)