A345531 Smallest prime power greater than the n-th prime.
3, 4, 7, 8, 13, 16, 19, 23, 25, 31, 32, 41, 43, 47, 49, 59, 61, 64, 71, 73, 79, 81, 89, 97, 101, 103, 107, 109, 113, 121, 128, 137, 139, 149, 151, 157, 163, 167, 169, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 256, 263, 269, 271, 277
Offset: 1
Keywords
Examples
a(4) = 8 because the fourth prime number is 7, and the least power of a prime which is greater than 7 is 2^3 = 8.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Dario T. de Castro, P-adic Order of Positive Integers via Binomial Coefficients, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 22, Paper A61, 2022.
Crossrefs
Programs
-
Maple
f:= proc(n) local p,x; p:= ithprime(n); for x from p+1 do if nops(numtheory:-factorset(x)) = 1 then return x fi od end proc: map(f, [$1..100]); # Robert Israel, Aug 25 2024
-
Mathematica
a[i_]:= Module[{j, k, N = 0, tab={}}, tab = Sort[Drop[DeleteDuplicates[Flatten[Table[ If[Prime[j]^k > Prime[i], Prime[j]^k], {j, 1, i+1}, {k, 1, Floor[Log[Prime[j], Prime[i+1]]]}]]], 1]]; N = Take[tab, 1][[1]]; N]; tabseq = Table[a[i],{i, 1, 100}]; (* second program *) Table[NestWhile[#+1&,Prime[n]+1, Not@*PrimePowerQ],{n,100}] (* Gus Wiseman, Nov 06 2024 *)
-
PARI
A000015(n) = for(k=n,oo,if((1==k)||isprimepower(k),return(k))); A345531(n) = A000015(1+prime(n)); \\ Antti Karttunen, Jul 19 2021
-
Python
from itertools import count from sympy import prime, factorint def A345531(n): return next(filter(lambda m:len(factorint(m))<=1, count(prime(n)+1))) # Chai Wah Wu, Oct 25 2024
Comments