A345614 Numbers that are the sum of eight fifth powers in six or more ways.
1431397, 2593811, 3329119, 3345410, 3609912, 3800722, 3932480, 4093604, 4096697, 4104553, 4114187, 4129433, 4154031, 4169869, 4377714, 4451412, 4475603, 4484634, 4501409, 4730845, 4756642, 4882770, 4912477, 4915506, 4970823, 5003645, 5112274, 5259111, 5449985
Offset: 1
Keywords
Examples
2593811 is a term because 2593811 = 1^5 + 1^5 + 4^5 + 9^5 + 13^5 + 13^5 + 13^5 + 17^5 = 1^5 + 1^5 + 8^5 + 8^5 + 8^5 + 14^5 + 14^5 + 17^5 = 1^5 + 6^5 + 6^5 + 8^5 + 9^5 + 9^5 + 14^5 + 18^5 = 2^5 + 5^5 + 6^5 + 6^5 + 6^5 + 15^5 + 15^5 + 16^5 = 3^5 + 3^5 + 6^5 + 7^5 + 9^5 + 12^5 + 13^5 + 18^5 = 4^5 + 4^5 + 4^5 + 6^5 + 11^5 + 11^5 + 13^5 + 18^5.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**5 for x in range(1, 1000)] for pos in cwr(power_terms, 8): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 6]) for x in range(len(rets)): print(rets[x])