A345623 Numbers that are the sum of nine fifth powers in six or more ways.
926404, 936607, 952896, 985421, 993574, 993605, 993816, 1075779, 1123321, 1133344, 1134367, 1151406, 1160105, 1166111, 1177144, 1206514, 1209669, 1209847, 1215545, 1225630, 1251130, 1264929, 1265320, 1278611, 1414834, 1422367, 1422609, 1430384, 1431367
Offset: 1
Keywords
Examples
936607 is a term because 936607 = 1^5 + 1^5 + 2^5 + 7^5 + 10^5 + 11^5 + 11^5 + 12^5 + 12^5 = 1^5 + 3^5 + 4^5 + 7^5 + 7^5 + 8^5 + 12^5 + 12^5 + 13^5 = 1^5 + 3^5 + 5^5 + 6^5 + 8^5 + 8^5 + 11^5 + 11^5 + 14^5 = 2^5 + 4^5 + 4^5 + 6^5 + 6^5 + 9^5 + 11^5 + 11^5 + 14^5 = 2^5 + 5^5 + 5^5 + 5^5 + 6^5 + 8^5 + 10^5 + 12^5 + 14^5 = 4^5 + 4^5 + 4^5 + 7^5 + 8^5 + 8^5 + 8^5 + 9^5 + 15^5.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**5 for x in range(1, 1000)] for pos in cwr(power_terms, 9): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 6]) for x in range(len(rets)): print(rets[x])