A345626 Numbers that are the sum of nine fifth powers in nine or more ways.
1969221, 2596936, 3353186, 3378178, 3923426, 3981447, 4094027, 4096729, 4112329, 4114188, 4129465, 4137209, 4147736, 4157156, 4170112, 4172994, 4254304, 4303773, 4410482, 4475846, 4477936, 4483379, 4485480, 4492410, 4501441, 4510461, 4543232, 4652011, 4691855
Offset: 1
Keywords
Examples
2596936 is a term because 2596936 = 1^5 + 1^5 + 4^5 + 5^5 + 9^5 + 13^5 + 13^5 + 13^5 + 17^5 = 1^5 + 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 14^5 + 14^5 + 17^5 = 1^5 + 4^5 + 7^5 + 7^5 + 7^5 + 9^5 + 9^5 + 14^5 + 18^5 = 1^5 + 5^5 + 6^5 + 6^5 + 8^5 + 9^5 + 9^5 + 14^5 + 18^5 = 2^5 + 3^5 + 4^5 + 4^5 + 7^5 + 12^5 + 13^5 + 14^5 + 17^5 = 2^5 + 5^5 + 5^5 + 6^5 + 6^5 + 6^5 + 15^5 + 15^5 + 16^5 = 3^5 + 3^5 + 5^5 + 6^5 + 7^5 + 9^5 + 12^5 + 13^5 + 18^5 = 4^5 + 4^5 + 4^5 + 5^5 + 6^5 + 11^5 + 11^5 + 13^5 + 18^5 = 4^5 + 4^5 + 4^5 + 7^5 + 7^5 + 8^5 + 9^5 + 16^5 + 17^5.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**5 for x in range(1, 1000)] for pos in cwr(power_terms, 9): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 9]) for x in range(len(rets)): print(rets[x])