A345642 Numbers that are the sum of ten fifth powers in ten or more ways.
1431641, 1439416, 1464377, 1464408, 1505660, 1531398, 1531640, 1564165, 1697929, 1703935, 1782171, 1969222, 1969253, 1969464, 1976997, 1985183, 1986028, 2000966, 2001989, 2028270, 2042460, 2052415, 2058421, 2059202, 2060522, 2069221, 2076393, 2130272, 2182162
Offset: 1
Keywords
Examples
1439416 is a term because 1439416 = 1^5 + 1^5 + 2^5 + 7^5 + 8^5 + 8^5 + 10^5 + 12^5 + 12^5 + 15^5 = 1^5 + 2^5 + 3^5 + 6^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5 = 1^5 + 2^5 + 3^5 + 6^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 3^5 + 5^5 + 6^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 1^5 + 4^5 + 6^5 + 6^5 + 7^5 + 7^5 + 8^5 + 9^5 + 12^5 + 16^5 = 2^5 + 2^5 + 3^5 + 4^5 + 6^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 2^5 + 4^5 + 4^5 + 6^5 + 6^5 + 8^5 + 8^5 + 9^5 + 14^5 + 15^5 = 3^5 + 3^5 + 3^5 + 3^5 + 6^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 3^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5 + 7^5 + 11^5 + 11^5 + 16^5 = 3^5 + 3^5 + 5^5 + 6^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..1000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**5 for x in range(1, 1000)] for pos in cwr(power_terms, 10): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 10]) for x in range(len(rets)): print(rets[x])