A345663 Numbers k such that A001414(k) is divisible by A007953(k).
1, 2, 3, 4, 5, 7, 10, 27, 32, 42, 60, 70, 91, 100, 110, 114, 115, 124, 130, 132, 143, 154, 170, 182, 185, 188, 200, 204, 215, 220, 221, 222, 230, 232, 238, 242, 266, 276, 295, 308, 315, 326, 338, 342, 378, 402, 437, 450, 472, 485, 494, 532, 540, 555, 572, 576, 583, 588, 612, 620, 624, 636, 648
Offset: 1
Examples
a(10) = 42 is a term because A001414(42) = 2+3+7 = 12 is divisible by A007953(42) = 4+2 = 6.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local t; add(t[1]*t[2],t=ifactors(n)[2]) mod convert(convert(n,base,10),`+`) = 0 end proc: select(filter, [$1..1000]);
-
Mathematica
Select[Range[650], Divisible[Plus @@ Times @@@ FactorInteger[#], Plus @@ IntegerDigits[#]] &] (* Amiram Eldar, Jun 21 2021 *)
-
PARI
sopfr(n) = my(f=factor(n)); sum(k=1, #f~, f[k,1]*f[k,2]); isok(k) = !(sopfr(k) % sumdigits(k)); \\ Michel Marcus, Jun 24 2021