A345674 Euler totient function phi(n) - number of primitive roots modulo n.
0, 0, 1, 1, 2, 1, 4, 4, 4, 2, 6, 4, 8, 4, 8, 8, 8, 4, 12, 8, 12, 6, 12, 8, 12, 8, 12, 12, 16, 8, 22, 16, 20, 8, 24, 12, 24, 12, 24, 16, 24, 12, 30, 20, 24, 12, 24, 16, 30, 12, 32, 24, 28, 12, 40, 24, 36, 16, 30, 16, 44, 22, 36, 32, 48, 20, 46, 32, 44, 24
Offset: 1
Keywords
Programs
-
Maple
a:= proc(n) uses numtheory; `if`(n=1, 0, (p-> p-add(`if`(order(i, n)=p, 1, 0), i=0..n-1))(phi(n))) end: seq(a(n), n=1..70); # Alois P. Heinz, Jun 22 2021
-
Mathematica
a[n_] := (e = EulerPhi[n]) - If[n == 1 || IntegerQ @ PrimitiveRoot[n], EulerPhi[e], 0]; Array[a, 100] (* Amiram Eldar, Jun 23 2021 *)