cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345698 Sierpiński problem in base 5: a(n) is the smallest k >= 0 such that (2*n)*5^k + 1 is prime, or -1 if no such k exists.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0, 3, 8, 0, 1, 0, 0, 3, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 0, 3, 0, 0, 257, 2, 0, 1, 0, 1, 1, 0, 2, 1, 2, 0, 1, 0, 0, 1, 0, 0, 3, 0, 1, 15, 4, 1, 79, 48, 0, 1, 0, 1, 5, 0, 0, 1, 6, 4, 3, 0, 0, 1, 2, 0, 3, 2, 0, 1, 0, 2, 7
Offset: 1

Views

Author

Felix Fröhlich, Jun 24 2021

Keywords

Comments

a(159986/2) = a(79993) = -1.

Examples

			For n = 17: 34*5^k + 1 is composite for k = 0, 1, 2, 3, 4, 5, 6, 7 and prime for k = 8. Since 8 is the smallest such k, a(17) = 8.
		

Crossrefs

Cf. A123159, A291437 (Sierpiński problem base 3), A345403 (Riesel problem base 5).

Programs

  • PARI
    a(n) = for(k=0, oo, if(ispseudoprime((2*n)*5^k+1), return(k)))