A345700 Numbers whose square can be represented in exactly two ways as the sum of a positive square and a positive fourth power.
65, 145, 260, 580, 585, 1025, 1040, 1105, 1305, 2320, 2340, 2465, 3185, 3625, 4100, 4160, 4335, 4420, 4810, 5220, 5265, 6625, 7105, 7585, 7865, 8405, 9225, 9280, 9360, 9860, 9945, 10985, 11745, 12740, 14500, 16400, 16465, 16640, 17340, 17545, 17680, 19240
Offset: 1
Keywords
Examples
29679^2 = 29640^2 + 39^4, so 29679 is not a term (only one solution). 17680^2 = 15088^2 + 96^4 = 17472^2 + 52^4, so 17680 is a term. 36900^2 = 36000^2 + 90^4 = 36828^2 + 48^4, so 36900 is a term. 18785^2 = 18207^2 + 68^4 = 17340^2 + 85^4 = 13983^2 + 112^4, so 18785 is not a term (three solutions).
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..10000
- Karl-Heinz Hofmann, All valid {z,x1,y1,x2,y2} sets up to 10^7
- Karl-Heinz Hofmann, Python code for multiple solutions
Crossrefs
Programs
-
PARI
inlist(list, v) = for (i=1, #list, if (list[i]==v, return(1))); isok(m) = {my(list = List()); for (k=1, sqrtnint(m^2, 4), if (issquare(j=m^2-k^4) && !inlist(vecsort([k^4,j^2])), listput(list, vecsort([k^4,j^2])));); #list == 2;} \\ Michel Marcus, Jun 26 2021
-
PARI
is(n)=my(n2=n^2,s); for(y=sqrtnint(2*n-2,4)+1,sqrtint(n-1), if(issquare(n2-y^4) && s++>2, return(0))); s==2; \\ Charles R Greathouse IV, Jul 02 2021
-
Python
# see link above.
Comments