A345728 Primes with an odd number of digits and 0 as the middle digit.
101, 103, 107, 109, 307, 401, 409, 503, 509, 601, 607, 701, 709, 809, 907, 10007, 10009, 10037, 10039, 10061, 10067, 10069, 10079, 10091, 10093, 10099, 11003, 11027, 11047, 11057, 11059, 11069, 11071, 11083, 11087, 11093, 12007, 12011, 12037, 12041, 12043, 12049, 12071, 12073, 12097, 13001, 13003, 13007
Offset: 1
Programs
-
Mathematica
Select[Prime@Range@2000,OddQ[d=Length[s=IntegerDigits[#]]]&&s[[Ceiling[d/2]]]==0&] (* Giorgos Kalogeropoulos, Jul 04 2021 *)
-
PARI
isok(p) = {if (isprime(p), my(d=digits(p)); (#d % 2) && (d[#d\2+1] == 0););} \\ Michel Marcus, Jun 28 2021
-
Perl
#!/usr/bin/perl $str = ""; foreach $cand (101..20000){ # loop over candidates next unless &isPrime($cand); # is $cand prime? 0/1 result @a = split("",$cand); next if @a/2 == int @a/2; $mid = int @a/2; next unless $a[$mid] == 0; $str .= "$cand, "; } chop $str; chop $str; print "$str\n";
-
Python
from sympy import isprime from itertools import product def agen(maxdigits): for digits in range(3, maxdigits+1, 2): for first in "123456789": for left in product("0123456789", repeat=digits//2-1): left = "".join(left) for right in product("0123456789", repeat=digits//2-1): right = "".join(right) for last in "1379": t = int("".join(first + left + "0" + right + last)) if isprime(t): yield t print([an for an in agen(5)]) # Michael S. Branicky, Jun 28 2021