cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A345751 E.g.f.: Product_{k>=1} (1 - (exp(x) - 1)^k)^(1/k).

Original entry on oeis.org

1, -1, -2, -3, -3, 40, 477, 4375, 45154, 486817, 5002397, 54970652, 732601449, 10046371231, 113632306694, 1051655108629, 12585372336141, 202763995934160, -863641466773595, -247388278229558697, -10810815349601723990, -311011007642247422759
Offset: 0

Views

Author

Seiichi Manyama, Jun 26 2021

Keywords

Comments

Stirling transform of A028343.

Crossrefs

Programs

  • Mathematica
    max = 21; Range[0, max]! * CoefficientList[Series[Product[(1 - (Exp[x] - 1)^k)^(1/k), {k, 1, max}], {x, 0, max}], x] (* Amiram Eldar, Jun 26 2021 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, (1-(exp(x)-1)^k)^(1/k))))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(-sum(k=1, N, numdiv(k)*(exp(x)-1)^k/k))))

Formula

E.g.f.: exp( -Sum_{k>=1} d(k) * (exp(x) - 1)^k / k ), where d(n) is the number of divisors of n.
a(n) = Sum_{k=0..n} Stirling2(n,k) * A028343(k).

A345749 E.g.f.: Product_{k>=1} 1/(1 - (exp(x) - 1)^k)^(1/k).

Original entry on oeis.org

1, 1, 4, 21, 147, 1250, 12633, 147497, 1947676, 28699373, 466994003, 8309274754, 160368858609, 3336869582657, 74468098634660, 1773827462044421, 44905503103938915, 1203843692164105458, 34070243272290551113, 1015056385225183643721
Offset: 0

Views

Author

Seiichi Manyama, Jun 26 2021

Keywords

Comments

Stirling transform of A028342.

Crossrefs

Programs

  • Mathematica
    max = 19; Range[0, max]! * CoefficientList[Series[Product[1/(1 - (Exp[x] - 1)^k)^(1/k), {k, 1, max}], {x, 0, max}], x] (* Amiram Eldar, Jun 26 2021 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-(exp(x)-1)^k)^(1/k))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N,numdiv(k)*(exp(x)-1)^k/k))))

Formula

E.g.f.: exp( Sum_{k>=1} d(k) * (exp(x) - 1)^k / k ), where d(n) is the number of divisors of n.
a(n) = Sum_{k=0..n} Stirling2(n,k) * A028342(k).
Showing 1-2 of 2 results.