cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345753 Euler-Fibonacci pseudoprimes: odd composites k such that F(k) == 5^((k-1)/2) == +-1 (mod k), where F(k) = A000045(k), the Fibonacci numbers.

Original entry on oeis.org

146611, 252601, 399001, 512461, 556421, 852841, 1024651, 1193221, 1314631, 1857241, 1909001, 2100901, 2165801, 2603381, 2704801, 3470921, 3828001, 3942271, 4504501, 5049001, 5148001, 5481451, 6189121, 6840001, 7267051, 7519441, 7879681, 8086231, 8341201, 8719921, 9439201, 9863461
Offset: 1

Views

Author

Amiram Eldar and Thomas Ordowski, Jun 26 2021

Keywords

Comments

If p is an odd prime except 5, then F(p) == 5^((p-1)/2) == +-1 (mod p).
All terms found satisfy the congruence F(k) == 5^((k-1)/2) == 1 (mod k). They are a proper subset of A094394.
Are there odd composites m such that F(m) == 5^((m-1)/2) == -1 (mod m)? They are a proper subset (maybe empty) of A094395 (they are not in the database, below 4*10^9).

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10^6, 2], CompositeQ[#] && MemberQ[{1, # - 1}, PowerMod[5, (# - 1)/2, #]] && Divisible[5^((# - 1)/2) - Fibonacci[#], #] &]