A345769 Numbers that are the sum of six cubes in exactly seven ways.
1710, 1766, 1773, 1988, 2051, 2160, 2196, 2249, 2251, 2259, 2314, 2322, 2349, 2375, 2417, 2424, 2480, 2492, 2513, 2520, 2531, 2539, 2548, 2564, 2565, 2574, 2611, 2613, 2639, 2656, 2702, 2707, 2762, 2770, 2773, 2792, 2798, 2808, 2818, 2825, 2826, 2833, 2844
Offset: 1
Keywords
Examples
1766 is a term because 1766 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 11^3 = 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 10^3 = 1^3 + 1^3 + 2^3 + 3^3 + 8^3 + 9^3 = 1^3 + 3^3 + 3^3 + 5^3 + 8^3 + 8^3 = 1^3 + 3^3 + 3^3 + 4^3 + 7^3 + 9^3 = 2^3 + 2^3 + 3^3 + 6^3 + 6^3 + 9^3 = 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 10^3.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..1359
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 6): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 7]) for x in range(len(rets)): print(rets[x])
Comments