A345778 Numbers that are the sum of seven cubes in exactly six ways.
955, 969, 1046, 1053, 1079, 1107, 1117, 1121, 1158, 1161, 1177, 1184, 1196, 1198, 1216, 1222, 1242, 1254, 1272, 1280, 1287, 1291, 1294, 1297, 1298, 1310, 1324, 1350, 1351, 1355, 1366, 1369, 1376, 1378, 1388, 1403, 1404, 1415, 1417, 1418, 1422, 1433, 1437
Offset: 1
Keywords
Examples
969 is a term because 969 = 1^3 + 1^3 + 1^3 + 3^3 + 5^3 + 6^3 + 6^3 = 1^3 + 2^3 + 2^3 + 2^3 + 5^3 + 5^3 + 7^3 = 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 6^3 = 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 8^3 = 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 6^3.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..344
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 7): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 6]) for x in range(len(rets)): print(rets[x])
Comments