cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A345545 Numbers that are the sum of nine cubes in six or more ways.

Original entry on oeis.org

472, 498, 505, 507, 524, 596, 598, 605, 624, 629, 631, 636, 643, 650, 655, 657, 661, 662, 669, 672, 676, 681, 687, 688, 690, 692, 694, 696, 706, 707, 713, 718, 720, 722, 725, 727, 728, 729, 731, 732, 737, 739, 742, 744, 746, 748, 749, 750, 751, 753, 755, 756
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			498 is a term because 498 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 5^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 6^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 = 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 6])
        for x in range(len(rets)):
            print(rets[x])

A345848 Numbers that are the sum of nine fourth powers in exactly six ways.

Original entry on oeis.org

4469, 4484, 5444, 5459, 5524, 5589, 5699, 5764, 6629, 6659, 6674, 6694, 6724, 6789, 6884, 6899, 6914, 6934, 6949, 6964, 7014, 7154, 7219, 7334, 7348, 7349, 7413, 7459, 7478, 7494, 7523, 7524, 7588, 7589, 7604, 7653, 7669, 7734, 7779, 7874, 7954, 7989, 8069
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345590 at term 14 because 6739 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 = 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4.

Examples

			4484 is a term because 4484 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 8^4 = 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 + 4^4 + 6^4 + 7^4 = 1^4 + 1^4 + 1^4 + 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 8^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 6])
        for x in range(len(rets)):
            print(rets[x])

A345788 Numbers that are the sum of eight cubes in exactly six ways.

Original entry on oeis.org

628, 719, 769, 776, 778, 795, 832, 839, 846, 858, 860, 865, 872, 875, 876, 882, 886, 891, 893, 895, 901, 907, 912, 927, 928, 931, 945, 946, 947, 951, 954, 956, 964, 965, 972, 989, 992, 998, 999, 1001, 1012, 1014, 1015, 1021, 1034, 1035, 1036, 1038, 1040, 1045
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345536 at term 22 because 902 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 9^3 = 1^3 + 1^3 + 3^3 + 4^3 + 5^3 + 5^3 + 6^3 + 7^3 = 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 6^3 + 6^3 + 7^3 = 1^3 + 2^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 + 8^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 9^3 = 2^3 + 2^3 + 2^3 + 4^3 + 4^3 + 4^3 + 7^3 + 7^3 = 3^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3.
Likely finite.

Examples

			719 is a term because 719 = 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 4^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 5^3 + 5^3 + 5^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 5^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 = 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 6])
        for x in range(len(rets)):
            print(rets[x])

A345797 Numbers that are the sum of nine cubes in exactly five ways.

Original entry on oeis.org

409, 413, 428, 435, 439, 446, 465, 479, 491, 502, 512, 517, 526, 531, 533, 535, 538, 540, 559, 561, 563, 566, 568, 570, 576, 579, 580, 587, 594, 600, 601, 603, 613, 615, 617, 620, 622, 627, 632, 633, 635, 638, 646, 651, 653, 664, 665, 668, 670, 675, 680, 683
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345544 at term 8 because 472 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 6^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 6^3 + 6^3 = 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3 + 5^3 + 5^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3.
Likely finite.

Examples

			413 is a term because 413 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 5^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 5])
        for x in range(len(rets)):
            print(rets[x])

A345799 Numbers that are the sum of nine cubes in exactly seven ways.

Original entry on oeis.org

624, 629, 631, 650, 657, 687, 694, 707, 713, 720, 727, 746, 753, 755, 763, 768, 777, 779, 781, 784, 786, 789, 792, 796, 798, 803, 807, 820, 822, 824, 831, 833, 848, 849, 854, 870, 873, 875, 876, 879, 884, 885, 889, 890, 892, 898, 899, 901, 902, 904, 905, 906
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345546 at term 12 because 744 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 9^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 + 7^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 5^3 + 5^3 + 5^3 + 7^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 5^3 + 6^3 + 7^3 = 1^3 + 3^3 + 3^3 + 4^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 4^3 + 4^3 + 8^3 = 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 5^3 + 5^3 + 5^3 + 6^3 = 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 7^3.
Likely finite.

Examples

			629 is a term because 629 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 5^3 + 6^3 = 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 7])
        for x in range(len(rets)):
            print(rets[x])

A345808 Numbers that are the sum of ten cubes in exactly six ways.

Original entry on oeis.org

436, 447, 466, 477, 480, 492, 503, 508, 510, 513, 515, 518, 527, 529, 536, 538, 539, 541, 551, 553, 560, 562, 564, 569, 577, 581, 590, 595, 601, 602, 603, 607, 608, 613, 614, 616, 618, 621, 628, 634, 636, 642, 643, 645, 647, 649, 654, 655, 659, 666, 678, 679
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345554 at term 2 because 440 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 6^3 + 6^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3 + 6^3 = 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 = 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 5^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3.
Likely finite.

Examples

			440 is a term because 440 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 5^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 6])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-6 of 6 results.