A345808 Numbers that are the sum of ten cubes in exactly six ways.
436, 447, 466, 477, 480, 492, 503, 508, 510, 513, 515, 518, 527, 529, 536, 538, 539, 541, 551, 553, 560, 562, 564, 569, 577, 581, 590, 595, 601, 602, 603, 607, 608, 613, 614, 616, 618, 621, 628, 634, 636, 642, 643, 645, 647, 649, 654, 655, 659, 666, 678, 679
Offset: 1
Keywords
Examples
440 is a term because 440 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 5^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..73
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 10): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 6]) for x in range(len(rets)): print(rets[x])
Comments