A345839 Numbers that are the sum of eight fourth powers in exactly seven ways.
8003, 8243, 9043, 9218, 9283, 9523, 10372, 10803, 10868, 10948, 11043, 11412, 11557, 11587, 12083, 12692, 12932, 13188, 13333, 13508, 13972, 14147, 14387, 14883, 14933, 14948, 14963, 15013, 15028, 15093, 15173, 15268, 15317, 15332, 15397, 15412, 15413, 15492
Offset: 1
Keywords
Examples
8243 is a term because 8243 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 8^4 + 8^4 = 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 6^4 + 9^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 + 8^4 = 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 8^4 = 2^4 + 4^4 + 4^4 + 4^4 + 4^4 + 7^4 + 7^4 + 7^4 = 3^4 + 4^4 + 4^4 + 4^4 + 6^4 + 6^4 + 7^4 + 7^4.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**4 for x in range(1, 1000)] for pos in cwr(power_terms, 8): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 7]) for x in range(len(rets)): print(rets[x])
Comments