A345857 Numbers that are the sum of ten fourth powers in exactly five ways.
2935, 3110, 3190, 3205, 3270, 3445, 3814, 3940, 4165, 4180, 4195, 4215, 4245, 4260, 4290, 4310, 4325, 4375, 4420, 4435, 4615, 4660, 4675, 4695, 4774, 4805, 4854, 4869, 4870, 4900, 4934, 4965, 4999, 5029, 5030, 5044, 5045, 5095, 5110, 5125, 5140, 5174, 5235
Offset: 1
Keywords
Examples
3110 is a term because 3110 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 6^4 + 6^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 7^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**4 for x in range(1, 1000)] for pos in cwr(power_terms, 10): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 5]) for x in range(len(rets)): print(rets[x])
Comments