cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345867 Total number of 0's in the binary expansions of the first n primes.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 7, 9, 10, 11, 11, 14, 17, 19, 20, 22, 23, 24, 28, 31, 35, 37, 40, 43, 47, 50, 52, 54, 56, 59, 59, 64, 69, 73, 77, 80, 83, 87, 90, 93, 96, 99, 100, 105, 109, 112, 115, 116, 119, 122, 125, 126, 129, 130, 137, 142, 147, 151, 156, 161, 165, 170
Offset: 1

Views

Author

Alois P. Heinz, Jun 26 2021

Keywords

Examples

			a(3) = 2: 2 = 10_2, 3 = 11_2, 5 = 101_2, so there are two 0's in the binary expansions of the first three primes.
		

Crossrefs

Partial sums of A035103.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 0, a(n-1)
          +add(1-i, i=Bits[Split](ithprime(n))))
        end:
    seq(a(n), n=1..100);
  • Mathematica
    Accumulate[DigitCount[Prime[Range[100]], 2, 0]] (* Paolo Xausa, Feb 26 2024 *)
  • Python
    from sympy import prime, primerange
    from itertools import accumulate
    def f(n): return (bin(n)[2:]).count('0')
    def aupton(nn): return list(accumulate(map(f, primerange(2, prime(nn)+1))))
    print(aupton(62)) # Michael S. Branicky, Jun 26 2021

Formula

a(n) = Sum_{i=1..n} A035103(i).
a(n) = a(n-1) for n in { A059305 }.
a(n) = A328659(n) - A095375(n).