cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345897 a(n) = 2*n^4/3 - 4*n^3/3 + 11*n^2/6 - 13*n/6 + 1.

Original entry on oeis.org

1, 0, 4, 29, 107, 286, 630, 1219, 2149, 3532, 5496, 8185, 11759, 16394, 22282, 29631, 38665, 49624, 62764, 78357, 96691, 118070, 142814, 171259, 203757, 240676, 282400, 329329, 381879, 440482, 505586, 577655, 657169, 744624, 840532, 945421, 1059835, 1184334, 1319494
Offset: 0

Views

Author

Michel Marcus, Jun 29 2021

Keywords

Comments

For n >=1, a(n) is the number of divisions of a 2 X n board into 3 pieces. See Jacob Brown article.

Crossrefs

Cf. A172482 (same but where the rightmost squares separate).

Programs

  • Mathematica
    CoefficientList[Series[(1 - 5 x + 14 x^2 - x^3 + 7 x^4)/(1 - x)^5, {x, 0, 38}], x] (* Michael De Vlieger, Apr 28 2023 *)
  • PARI
    a(n) = 2*n^4/3 - 4*n^3/3 + 11*n^2/6 - 13*n/6 + 1;

Formula

From Chai Wah Wu, Jun 29 2021: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4.
G.f.: (1 - 5*x + 14*x^2 - x^3 + 7*x^4)/(1-x)^5. (End)