A345897 a(n) = 2*n^4/3 - 4*n^3/3 + 11*n^2/6 - 13*n/6 + 1.
1, 0, 4, 29, 107, 286, 630, 1219, 2149, 3532, 5496, 8185, 11759, 16394, 22282, 29631, 38665, 49624, 62764, 78357, 96691, 118070, 142814, 171259, 203757, 240676, 282400, 329329, 381879, 440482, 505586, 577655, 657169, 744624, 840532, 945421, 1059835, 1184334, 1319494
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Jacob Brown, Counting Divisions of a 2 X n Rectangular Grid, arXiv:2106.14755 [math.CO], 2021.
- Tomislav Došlić and Luka Podrug, Sweet division problems: from chocolate bars to honeycomb strips and back, arXiv:2304.12121 [math.CO], 2023.
- Samuel Durham and Tom Richmond, Connected Subsets of an n X 2 Rectangle, The College Mathematics Journal, Volume 51, 2020 - Issue 1.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Cf. A172482 (same but where the rightmost squares separate).
Programs
-
Mathematica
CoefficientList[Series[(1 - 5 x + 14 x^2 - x^3 + 7 x^4)/(1 - x)^5, {x, 0, 38}], x] (* Michael De Vlieger, Apr 28 2023 *)
-
PARI
a(n) = 2*n^4/3 - 4*n^3/3 + 11*n^2/6 - 13*n/6 + 1;
Formula
From Chai Wah Wu, Jun 29 2021: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4.
G.f.: (1 - 5*x + 14*x^2 - x^3 + 7*x^4)/(1-x)^5. (End)
Comments