A345933 a(n) = n / gcd(n, A002034(n)), where A002034(n) gives the smallest positive integer k such that n divides k!.
1, 1, 1, 1, 1, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 8, 1, 3, 1, 4, 3, 2, 1, 6, 5, 2, 3, 4, 1, 6, 1, 4, 3, 2, 5, 6, 1, 2, 3, 8, 1, 6, 1, 4, 15, 2, 1, 8, 7, 5, 3, 4, 1, 6, 5, 8, 3, 2, 1, 12, 1, 2, 9, 8, 5, 6, 1, 4, 3, 10, 1, 12, 1, 2, 15, 4, 7, 6, 1, 40, 9, 2, 1, 12, 5, 2, 3, 8, 1, 15, 7, 4, 3, 2, 5, 12, 1, 7, 9, 10, 1, 6, 1, 8, 15
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
- Index entries for sequences related to factorial numbers
Programs
-
Mathematica
Table[n/GCD[n,m=1;While[Mod[m!,n]!=0,m++];m],{n,100}] (* Giorgos Kalogeropoulos, Jul 03 2021 *)
-
PARI
A002034(n) = if(1==n,n,my(s=factor(n)[, 1], k=s[#s], f=Mod(k!, n)); while(f, f*=k++); (k)); \\ After code in A002034. A345933(n) = (n/gcd(n, A002034(n)));