A345939 a(n) = (n-1) / gcd(n-1, uphi(n)), where uphi is unitary totient (or unitary phi) function, A047994.
0, 1, 1, 1, 1, 5, 1, 1, 1, 9, 1, 11, 1, 13, 7, 1, 1, 17, 1, 19, 5, 21, 1, 23, 1, 25, 1, 3, 1, 29, 1, 1, 8, 33, 17, 35, 1, 37, 19, 39, 1, 41, 1, 43, 11, 45, 1, 47, 1, 49, 25, 17, 1, 53, 27, 55, 14, 57, 1, 59, 1, 61, 31, 1, 4, 13, 1, 67, 17, 23, 1, 71, 1, 73, 37, 25, 19, 77, 1, 79, 1, 81, 1, 83, 21, 85, 43, 87, 1, 89, 5, 91
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
Programs
-
Mathematica
uphi[1]=1;uphi[n_]:=Times@@(#[[1]]^#[[2]]-1&/@FactorInteger[n]); a[n_]:=(n-1)/GCD[n-1,uphi[n]];Array[a,100] (* Giorgos Kalogeropoulos, Jul 02 2021 *)
-
PARI
A047994(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^f[2, i])-1); }; A345939(n) = ((n-1) / gcd(n-1, A047994(n)));