A345971 Irregular triangle T(n,k) read by rows in which n-th row lists numbers of series-reduced trees realized by respective degree sequences in n-th row of A345970; n >= 4, 1 <= k <= A002865(n-2).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 3, 1, 4, 1, 1, 1, 1, 1, 2, 3, 2, 2, 4, 6, 2, 1, 1, 1, 1, 1, 2, 3, 3, 2, 2, 4, 9, 4, 8, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 2, 3, 1, 4, 9, 6, 9, 2, 8, 14, 4, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 2, 3, 2, 2, 4, 9, 9, 9, 9, 4, 8, 25, 14, 15
Offset: 4
Examples
Row number 9 is {1, 1, 1, 2} because the 9th row of A345970 is {4864, 8320, 9856, 11200} which can be decoded (using Decode() of A345970) to the 4-degree sequences [8,1,1,1,1,1,1,1,1], which obviously has just 1 realization, [6,3,1,1,1,1,1,1,1], [5,4,1,1,1,1,1,1,1], that also have one, and [4,3,3,1,1,1,1,1,1] which realizes the 2 trees: . * * * * * * | | | | | | *--0--*--* *--*--0--* | | | | * * * * . Triangle begins n \ k 1 2 3 4 5 6 7 8 9 10 11 12 4 1; 5 1; 6 1, 1; 7 1, 1; 8 1, 1, 1, 1; 9 1, 1, 1, 2; 10 1, 1, 1, 1, 2, 2, 2; 11 1, 1, 1, 1, 2, 3, 1, 4; 12 1, 1, 1, 1, 1, 2, 3, 2, 2, 4, 6, 2; ...
Links
- Nima Amini, Not That Good, Will Hunting
- R. H. Johnson, Properties of unique realizations-a survey, Discrete Mathematics, Volume 31 January, 1980 pp 185-192.
- B. D. McKay, Lists of Trees sorted by diameter and Homeomorphically irreducible trees, with <= 22 nodes.
- Gerry Myerson, Problems2004
- Index entries for sequences related to trees
Crossrefs
Programs
-
PARI
D_Generator(n) = { my(D = vectorsmall(n), j); M = Map(); \\ For each partition of n-2, "P", forpart( P = n-2, \\ P without parts 1, make D = for(i = 1, n-#P, D[i] = 1); j = n-#P; \\ [1..1 0..0], n-#P terms 1, and for(i = 1, #P, D[j++] = P[i] + 1); \\ #p terms 0. Complete D. mapput(M, D, 0) , [2, n-2] ) \\ store D. }; EdgesList2D(n, Tr) = {my(D = vectorsmall(n), E = strsplit(Tr, " "), u_v); for(j = 1, n-1, u_v = strsplit(E[j], " "); u_v = eval(u_v); D[ u_v[1]+1 ]++; D[ u_v[2]+1 ]++); vecsort(D) }; \\ Using files hitree4.txt etc from McKay. Rows(r1, r2) = {my(Trees, D, j, C); for(n = r1, r2, Trees = readstr(Str("hitree", n, ".txt")); D_Generator(n); for(i = 1, #Trees, D = EdgesList2D(n, Trees[i]); j = mapget(M, D); mapput(~M, D, j+1)); C = Mat(M)[, 2]; print1(n" "); for(i = 1, #C, print1(C[i]", ")); print() ) };
Comments