A346088 Smallest divisor d of n for which A002034(d) = A002034(n), where A002034(n) is the smallest positive integer k such that k! is a multiple of n.
1, 2, 3, 4, 5, 3, 7, 4, 9, 5, 11, 4, 13, 7, 5, 16, 17, 9, 19, 5, 7, 11, 23, 4, 25, 13, 27, 7, 29, 5, 31, 32, 11, 17, 7, 9, 37, 19, 13, 5, 41, 7, 43, 11, 9, 23, 47, 16, 49, 25, 17, 13, 53, 27, 11, 7, 19, 29, 59, 5, 61, 31, 7, 32, 13, 11, 67, 17, 23, 7, 71, 9, 73, 37, 25, 19, 11, 13, 79, 16, 27, 41, 83, 7, 17, 43, 29, 11, 89
Offset: 1
Keywords
Examples
36 has 9 divisors: 1, 2, 3, 4, 6, 9, 12, 18, 36. When A002034 is applied to them, one obtains values [1, 2, 3, 4, 3, 6, 4, 6, 6], thus there are three divisors that obtain the maximal value 6 obtained at 36 itself, of which divisor 9 is the smallest, and therefore a(36) = 9.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Crossrefs
Programs
Formula
a(n) = n / A346089(n).