cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346103 Numerators of sequence whose Dirichlet convolution with itself yields A342920.

Original entry on oeis.org

1, 1, 1, 7, 1, 3, 1, 57, 47, 3, 1, 19, 1, 3, 11, 747, 1, 139, 1, 19, 11, 3, 1, 319, 199, 3, 81, 19, 1, 231, 1, -265, 11, 3, 251, 873, 1, 3, 11, 191, 1, 79, 1, 19, 299, 3, 1, -157, 5943, 595, 11, 19, 1, 151, 187, 31, 11, 3, 1, 269, 1, 3, 507, -957, 527, 31, 1, 19, 11, 223, 1, 18787, 1, 3, 8915, 19, 483, 31, 1, 2147, 19355
Offset: 1

Views

Author

Antti Karttunen, Jul 09 2021

Keywords

Crossrefs

Cf. A046644 (gives the denominators).

Programs

  • PARI
    up_to = 2310;
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A342002(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= p^(e>0); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); };
    A342920(n) = A342002(A108951(n));
    vA346103aux = DirSqrt(vector(up_to, n, A342920(n)));
    A346103(n) = numerator(vA346103aux[n]);