A346177
a(n) is the least integer k such that k*prime(n) is in A346113, or 0 if no such k exists.
Original entry on oeis.org
5419, 558227, 102539, 201031, 30553, 76597, 619, 15971, 106174, 313, 381319, 13627, 9137, 1951, 1559, 64157, 5167, 64919, 237163, 13327, 165829, 8698, 4003, 135211, 68674, 16581, 38667, 547, 7841, 120397, 16487, 39367, 2441, 100649, 94889, 12157, 74093, 9466, 4673
Offset: 1
-
isok(k) = {my(t = numdiv(k)); for (b=2, 10, my(d=digits(k, b)); if (numdiv(fromdigits(Vecrev(d), b)) != t, return (0));); return(1);} \\ A346113
a(n) = my(p=prime(n), k=1); while (! isok(k*p), k++); k;
A346141
Numbers k whose number of divisors equals the number of divisors in each of R(k), k+R(k), R(k+R(k)), abs(k-R(k)), and R(abs(k-R(k))), where R(m) is the digit reversal of m and where the reversals of m do not equal m.
Original entry on oeis.org
117858, 129138, 137976, 138222, 194838, 201569, 222831, 281256, 302844, 439415, 448203, 454016, 500638, 514934, 516378, 526486, 533938, 552926, 560766, 562936, 595016, 607499, 607597, 610454, 610595, 629255, 639265, 652182, 654018, 659358, 667065, 679731, 684625, 795706, 810456, 813179
Offset: 1
117858 is a term as the number of divisors of 117858 = tau(117858) = 16, and this equals tau(R(117858)) = tau(858711) = 16, tau(117858+R(117858)) = tau(976569) = 16, tau(R(117858+R(117858))) = tau(965679) = 16, tau(abs(117858-R(117858))) = tau(740853) = 16, and tau(R(abs(117858-R(117858)))) = tau(358047) = 16.
Showing 1-2 of 2 results.
Comments