cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346149 a(n) is the least integer k > 1 such that n^k + n + 1 is prime, or 0 if there is no such k.

Original entry on oeis.org

2, 2, 2, 0, 2, 2, 0, 2, 3, 0, 4, 2, 0, 2, 2, 0, 2, 3, 0, 2, 2, 0, 9, 2, 0, 4, 2, 0, 3, 3, 0, 3, 2, 0, 15, 4, 0, 2, 3, 0, 2, 3, 0, 3, 6, 0, 4, 3, 0, 2, 9, 0, 3, 2, 0, 3, 2, 0, 2, 3, 0, 2, 73, 0, 12, 2, 0, 595, 2, 0, 2, 4, 0, 3, 2, 0, 2, 2, 0, 2, 7, 0, 3, 30, 0, 21, 3, 0, 2, 2, 0, 7, 67, 0, 3
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jul 07 2021

Keywords

Comments

a(n) = 0 if n == 1 (mod 3) and n > 1.
Conjecture: a(n) > 0 otherwise.

Examples

			a(9) = 3 because 9^3 + 9 + 1 = 739 is prime while 9^2+9+1 is not.
		

Programs

  • Maple
    f:= proc(n) local i;
    if n mod 3 = 1 then return 0 fi;
    for i from 2 do if isprime(n^i+n+1) then return i fi od:
    end proc:
    f(1):= 2:
    map(f, [$1..100]);
  • PARI
    a(n) = if ((n>1) && ((n%3)==1), 0, my(k=2); while (!isprime(n^k+n+1), k++); k); \\ Michel Marcus, Jul 07 2021
    
  • Python
    from sympy import isprime
    def a(n):
        if n > 1 and n%3 == 1: return 0
        k = 2
        while not isprime(n**k + n + 1): k += 1
        return k
    print([a(n) for n in range(1, 96)]) # Michael S. Branicky, Jul 08 2021