A346154 a(n) is the least prime of the form n^k+n+1 with k>1, or 0 if there is no such prime.
3, 7, 13, 0, 31, 43, 0, 73, 739, 0, 14653, 157, 0, 211, 241, 0, 307, 5851, 0, 421, 463, 0, 1801152661487, 601, 0, 457003, 757, 0, 24419, 27031, 0, 32801, 1123, 0, 144884079282928466796911, 1679653, 0, 1483, 59359, 0, 1723, 74131, 0, 85229, 8303765671, 0, 4879729, 110641, 0, 2551, 2334165173090503
Offset: 1
Keywords
Examples
a(9) = 739 because 9^3 + 9 + 1 = 739 is prime while 9^2 + 9 + 1 is not.
Links
- Robert Israel, Table of n, a(n) for n = 1..67
Crossrefs
Cf. A346149.
Programs
-
Maple
f:= proc(n) local i; if n mod 3 = 1 then return 0 fi; for i from 2 do if isprime(n^i+n+1) then return n^i+n+1 fi od: end proc: f(1):= 3: map(f, [$1..100]);
-
Python
from sympy import isprime def a(n): if n > 1 and n%3 == 1: return 0 k = 2 while not isprime(n**k + n + 1): k += 1 return n**k + n + 1 print([a(n) for n in range(1, 52)]) # Michael S. Branicky, Jul 07 2021
Comments