A346160 a(n) is the smallest K such that the power partition function P_n(k) is log-concave for all k > K.
0, 25, 1041, 15655, 637854, 2507860, 35577568
Offset: 0
Examples
For n=0, P_0(k)^2 >= P_0(k-1)*P_0(k+1) for all k > 0. For n=1, P_1(k)^2 >= P_1(k-1)*P_1(k+1) for all k > 24. For n=2, P_2(k)^2 >= P_2(k-1)*P_2(k+1) for all k > 1042. For n=3, P_3(k)^2 >= P_3(k-1)*P_3(k+1) for all k > 15656. No further terms are known.
References
- Stephen DeSalvo and Igor Pak, Log-concavity of the partition function, The Ramanujan Journal, 38 (2015), 61-73.
Links
- Brennan Benfield and Arindam Roy, Log-concavity And The Multiplicative Properties of Restricted Partition Functions, arXiv:2404.03153 [math.NT], 2024.
- Stephen DeSalvo and Igor Pak, Log-Concavity of the Partition Function, arXiv:1310.7982 [math.CO], 2013-2014.
Programs
-
SageMath
def power_partition_generating_series(s, n=20): R = ZZ['q'] ans = R.one() m = 1 while m**s < n: l = [0] * n l[0] = 1 for i in range(1, (n + m**s - 1) // m**s): l[i*m**s] = 1 ans = ans.mul_trunc(R(l), n) m += 1 return ans %time seq = power_partition_generating_series(2, 15000).coefficients() last_neg = None for n in range(2, len(seq) - 1): d = seq[n]**2 / seq[n-1] / seq[n+1] if d < 1: last_neg = n print(last_neg) # Vincent Delecroix, Dec 28 2022
Extensions
Data corrected by Brennan G. Benfield, Dec 28 2022
Comments