A346161 Prime numbers p such that the number of iterations of map A039634 required for p to reach 2 sets a new record.
2, 3, 7, 23, 47, 191, 383, 1439, 2879, 11519, 23039, 261071, 1044287, 2949119, 31426559, 194224127, 1069493759, 8554807007, 31337349119, 68438456063, 136876912127, 547507648511, 8760122376191
Offset: 1
Examples
Terms in this sequence are indicated in square brackets in the tree below for primes up to 97. Note that a(n) is the smallest prime of depth n-1. 1 ___________[2]____________ | / / | \ \ \ _______[3]__ ____ 5 _ 17 19 37 67 73 / | \ / | \ | | _[7]_ 13 97 11 41 43 71 79 / | \ | / \ | 29 31 61 53 [23] 89 83 | | 59 [47]
Programs
-
Python
from sympy import nextprime, isprime rec = -1; p1 = 1 while p1 < 1000000000: p = nextprime(p1); m = p; ct = 0 while m > 2: if isprime(m): ct += 1 m //= 2 if ct > rec: print(p); rec = ct p1 = p
Extensions
a(19)-a(23) from Martin Ehrenstein, Aug 22 2021
Comments