A346174 Inverse binomial transform of A317614.
0, 1, 6, 30, 120, 420, 1344, 4032, 11520, 31680, 84480, 219648, 559104, 1397760, 3440640, 8355840, 20054016, 47628288, 112066560, 261488640, 605552640, 1392771072, 3183476736, 7235174400, 16357785600, 36805017600, 82443239424, 183911841792, 408692981760, 904963031040
Offset: 0
Links
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Binomial Transform
- Index entries for linear recurrences with constant coefficients, signature (8,-24,32,-16).
Programs
-
Mathematica
LinearRecurrence[{8,-24,32,-16},{0,1,6,30,120,420},30]
Formula
O.g.f.: x*(1 - 2*x + 6*x^2 - 8*x^3 + 4*x^4)/(1 - 2*x)^4.
E.g.f.: x*(1 + exp(2*x)*(3 + 6*x + 2*x^2))/4.
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) for n > 5.
a(n) = 2^(n-4)*n*(n + 1)*(n + 2) with a(0) = 0 and a(1) = 1.
a(n) ~ A128789(n)/16.
Sum_{n>0} 1/a(n) = 8*log(2) - 13/3 = 1.21184411114622914200452363833...