cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346205 Decimal expansion of solution to LambertW(-x) - LambertW(-1,-x) = 2.

Original entry on oeis.org

2, 2, 8, 8, 9, 8, 9, 4, 8, 1, 9, 6, 1, 7, 8, 6, 4, 1, 2, 3, 6, 6, 3, 6, 1, 2, 5, 3, 7, 2, 2, 0, 5, 5, 3, 5, 6, 3, 4, 2, 6, 2, 8, 2, 7, 1, 8, 1, 4, 6, 2, 6, 2, 3, 6, 6, 7, 6, 7, 7, 7, 6, 6, 1, 4, 4, 4, 1, 3, 2, 0, 3, 0, 2, 2, 3, 1, 9, 6, 9, 7, 1, 3, 6, 7, 8, 3, 1, 5, 3, 2, 3, 7, 3, 9, 7, 7, 1, 5, 7, 3, 3, 6, 3, 1, 3, 4, 6, 6, 6
Offset: 0

Views

Author

Gleb Koloskov, Jul 10 2021

Keywords

Examples

			0.2288989481961786412366361253722...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(135)); 2/(Exp(2)-1)*Exp(2/(1-Exp(2))); // G. C. Greubel, Jun 11 2024
    
  • Mathematica
    x/.FindRoot[LambertW[-x]-LambertW[-1,-x]==2, {x, 0.1, 0.3}, WorkingPrecision -> 110]
    RealDigits[2/(E^2-1)*Exp[2/(1-E^2)], 10, 135][[1]] (* G. C. Greubel, Jun 11 2024 *)
  • PARI
    exp(-cotanh(1))/sinh(1)
    
  • SageMath
    numerical_approx(2/(e^2-1)*exp(2/(1-e^2)), digits=135) # G. C. Greubel, Jun 11 2024

Formula

Equals exp(-coth(1))/sinh(1) = exp(-A073747)/A073742.
Equals (coth(1)-1)*exp(1-coth(1)) = (A073747-1)*exp(1-A073747).
Equals (coth(1)+1)/exp(1+coth(1)) = (A073747+1)/exp(1+A073747).
Equals 2/(e^2-1)*exp(2/(1-e^2)) = 2/(A072334^2-1)*exp(2/(1-A072334^2)).