A346206 Primes p, with k digits, such that the Sum_{i=1..k} (p without its i-th digit)/(its i-th digit) is a prime.
11, 21673, 27367, 32611, 33311, 41141, 48821, 82781, 171263, 211441, 243433, 323443, 343243, 449699, 632623, 663661, 727271, 772127, 847871, 882881, 944969, 1129699, 1192699, 1193939, 1262633, 1334341, 1342433, 1343423, 1361441, 1388641, 1399193, 1461883, 1613441
Offset: 1
Examples
21673 gives 1673/2 + 2673/1 + 2173/6 + 2163/7 + 2167/3 = 4903; so 21673 is a term.
Links
- Michel Marcus, Table of n, a(n) for n = 1..441
- Carlos Rivera, Puzzle 1045. One nice puzzle from Paolo Lava, The Prime Puzzles and Problems Connection.
Crossrefs
Subsequence of A038618 (zeroless primes).
Programs
-
PARI
subs(d, j) = {my(x=""); for (k=1, #d, if (j != k, x = concat(x, d[k]));); eval(x);} isok(p) = {my(d=digits(p), res); if (isprime(p) && vecmin(d), res = sum(j=1, #d, subs(d, j)/d[j]); (denominator(res)==1) && isprime(res););}
-
Python
from sympy import isprime, primerange from fractions import Fraction def ok(p): s = str(p) if '0' in s or len(s) == 1: return False f = sum(Fraction(int(s[:i]+s[i+1:]), int(s[i])) for i in range(len(s))) return f.denominator == 1 and isprime(f.numerator) def aupto(lim): return [p for p in primerange(1, lim+1) if ok(p)] print(aupto(1620000)) # Michael S. Branicky, Jul 11 2021