cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346221 Palindromes that are multiples of 11 and whose digit sum is also a multiple of 11.

Original entry on oeis.org

2992, 3883, 4774, 5665, 6556, 7447, 8338, 9229, 10901, 20702, 30503, 40304, 50105, 70807, 80608, 90409, 119911, 128821, 137731, 146641, 155551, 164461, 173371, 182281, 191191, 209902, 218812, 227722, 236632, 245542, 254452, 263362, 272272, 281182, 290092, 308803
Offset: 1

Views

Author

Tanya Khovanova, Jul 11 2021

Keywords

Comments

Palindromes in A216995.

Examples

			11 is a palindrome that is a multiple of 11, but its digit sum is not divisible by 11. Thus, 11 is not in this sequence.
		

Crossrefs

Cf. A002113, A083513, A166311 (halves of even length terms), A216995.

Programs

  • Mathematica
    Select[Range[400000], PalindromeQ[#] && IntegerQ[#/11] && IntegerQ[Total[IntegerDigits[#]]/11] &]
  • PARI
    isok(m) = my(d=digits(m)); (Vecrev(d) == d) && !(m % 11) && !(vecsum(d) % 11); \\ Michel Marcus, Aug 06 2021
  • Python
    from itertools import product
    def sd(n): return sum(map(int, str(n)))
    def pals(d, base=10): # all positive d-digit palindromes
        digits = "".join(str(i) for i in range(base))
        for p in product(digits, repeat=d//2):
            if d > 1 and p[0] == "0": continue
            left = "".join(p); right = left[::-1]
            for mid in [[""], digits][d%2]:
                t = int(left + mid + right)
                if t > 0: yield t
    def ok(pal): return pal%11 == 0 and sd(pal)%11 == 0
    print([p for d in range(1, 7) for p in pals(d) if ok(p)]) # Michael S. Branicky, Jul 11 2021