A346226 Number of n-step 5-dimensional nonnegative lattice walks starting at the origin and using steps that increment all components or decrement one component by 1.
1, 1, 6, 31, 146, 686, 3476, 18711, 101106, 540986, 2914396, 15949626, 88494316, 493812436, 2757957496, 15432771991, 86805867666, 490992405026, 2788039913036, 15864244837646, 90398688107076, 516136925025356, 2954961007771656, 16960102805812986
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..125
Crossrefs
Column k=5 of A335570.
Programs
-
Maple
b:= proc(n, l) option remember; `if`(n=0, 1, (k-> `if`(n>min(l), add(`if`(l[i]=0, 0, b(n-1, sort(subsop(i=l[i]-1, l)))), i=1..k)+b(n-1, map(x-> x+1, l)), (k+1)^n))(nops(l))) end: a:= n-> b(n, [0$5]): seq(a(n), n=0..27);
Formula
a(n) == 1 (mod 5).