A346227 Number of n-step 6-dimensional nonnegative lattice walks starting at the origin and using steps that increment all components or decrement one component by 1.
1, 1, 7, 43, 241, 1315, 7525, 46165, 292015, 1839901, 11536747, 72847417, 466127719, 3018752041, 19678318207, 128531220955, 840554295625, 5513681844355, 36333611660245, 240480114800023, 1596692607223561, 10621894482682471, 70761572688601777, 472172623607888563
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..120
Crossrefs
Column k=6 of A335570.
Programs
-
Maple
b:= proc(n, l) option remember; `if`(n=0, 1, (k-> `if`(n>min(l), add(`if`(l[i]=0, 0, b(n-1, sort(subsop(i=l[i]-1, l)))), i=1..k)+b(n-1, map(x-> x+1, l)), (k+1)^n))(nops(l))) end: a:= n-> b(n, [0$6]): seq(a(n), n=0..27);
Formula
a(n) == 1 (mod 6).