A346228 Number of n-step 7-dimensional nonnegative lattice walks starting at the origin and using steps that increment all components or decrement one component by 1.
1, 1, 8, 57, 372, 2332, 14960, 102173, 732124, 5306652, 38253888, 275352960, 1996376544, 14642264736, 108536296800, 809764874325, 6057499056204, 45368515203628, 340472040666080, 2563725956556584, 19381407270110656, 147036877912623840, 1118355187220657856
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..90
Crossrefs
Column k=7 of A335570.
Programs
-
Maple
b:= proc(n, l) option remember; `if`(n=0, 1, (k-> `if`(n>min(l), add(`if`(l[i]=0, 0, b(n-1, sort(subsop(i=l[i]-1, l)))), i=1..k)+b(n-1, map(x-> x+1, l)), (k+1)^n))(nops(l))) end: a:= n-> b(n, [0$7]): seq(a(n), n=0..27);
Formula
a(n) == 1 (mod 7).