A346229 Number of n-step 8-dimensional nonnegative lattice walks starting at the origin and using steps that increment all components or decrement one component by 1.
1, 1, 9, 73, 545, 3881, 27761, 208593, 1655241, 13490897, 110135641, 895031361, 7279880713, 59647817713, 493774294393, 4125976137817, 34688652854097, 292496479087385, 2469649871976929, 20883345481893257, 177031405058676369, 1505681846157691769
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..90
Crossrefs
Column k=8 of A335570.
Programs
-
Maple
b:= proc(n, l) option remember; `if`(n=0, 1, (k-> `if`(n>min(l), add(`if`(l[i]=0, 0, b(n-1, sort(subsop(i=l[i]-1, l)))), i=1..k)+b(n-1, map(x-> x+1, l)), (k+1)^n))(nops(l))) end: a:= n-> b(n, [0$8]): seq(a(n), n=0..27);
Formula
a(n) == 1 (mod 8).