A346230 Number of n-step 9-dimensional nonnegative lattice walks starting at the origin and using steps that increment all components or decrement one component by 1.
1, 1, 10, 91, 766, 6130, 48628, 399403, 3459646, 31119382, 283230172, 2571653926, 23283756892, 211338730900, 1932349078216, 17832773405035, 165944764694782, 1552985405704558, 14576920303430476, 137021547292573186, 1289614077968369716, 12160967374482417964
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..75
Crossrefs
Column k=9 of A335570.
Programs
-
Maple
b:= proc(n, l) option remember; `if`(n=0, 1, (k-> `if`(n>min(l), add(`if`(l[i]=0, 0, b(n-1, sort(subsop(i=l[i]-1, l)))), i=1..k)+b(n-1, map(x-> x+1, l)), (k+1)^n))(nops(l))) end: a:= n-> b(n, [0$9]): seq(a(n), n=0..27);
Formula
a(n) == 1 (mod 9).