A346231 Number of n-step 10-dimensional nonnegative lattice walks starting at the origin and using steps that increment all components or decrement one component by 1.
1, 1, 11, 111, 1041, 9271, 81101, 725021, 6794611, 66508821, 665254791, 6674936601, 66755513931, 666897563121, 6686651885691, 67529142206631, 687755702224881, 7056692549851951, 72780288870993221, 752810967999798491, 7798329264904129201, 80874531810513679011
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..75
Crossrefs
Column k=10 of A335570.
Programs
-
Maple
b:= proc(n, l) option remember; `if`(n=0, 1, (k-> `if`(n>min(l), add(`if`(l[i]=0, 0, b(n-1, sort(subsop(i=l[i]-1, l)))), i=1..k)+b(n-1, map(x-> x+1, l)), (k+1)^n))(nops(l))) end: a:= n-> b(n, [0$10]): seq(a(n), n=0..27);
Formula
a(n) == 1 (mod 10).