cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346241 Dirichlet inverse of pointwise sum of A003415 (arithmetic derivative of n) and A063524 (1, 0, 0, 0, ...).

Original entry on oeis.org

1, -1, -1, -3, -1, -3, -1, -5, -5, -5, -1, -1, -1, -7, -6, -3, -1, -2, -1, -5, -8, -11, -1, 17, -9, -13, -16, -9, -1, 3, -1, 11, -12, -17, -10, 33, -1, -19, -14, 19, -1, 1, -1, -17, -14, -23, -1, 63, -13, -14, -18, -21, -1, 28, -14, 21, -20, -29, -1, 76, -1, -31, -22, 45, -16, -3, -1, -29, -24, -9, -1, 112, -1, -37, -22, -33
Offset: 1

Views

Author

Antti Karttunen, Jul 13 2021

Keywords

Crossrefs

Cf. A003415, A354806, A354807, A354808 (positions of negative terms), A354809 (of terms >= 0), A354818 (of even terms).

Programs

  • PARI
    up_to = 65537;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003415plusA063524(n) = if(n<=1, 1, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    v346241 = DirInverseCorrect(vector(up_to,n,A003415plusA063524(n)));
    A346241(n) = v346241[n];
    
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    memoA346241 = Map();
    A346241(n) = if(1==n,1,my(v); if(mapisdefined(memoA346241,n,&v), v, v = -sumdiv(n,d,if(dA003415(n/d)*A346241(d),0)); mapput(memoA346241,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA003415(n/d) * a(d).