cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346268 a(n) is the smallest positive number not yet in a(0..n-1) such that the absolute differences of order k = 1 .. n-1 of a(0..n) contain a maximum of k-1 duplicate values. We define a(0) = 1.

Original entry on oeis.org

1, 2, 4, 7, 12, 3, 9, 20, 40, 36, 5, 26, 18, 47, 115, 13, 6, 19, 44, 94, 193, 87, 60, 48, 84, 170, 355, 31, 14, 63, 25, 119, 71, 187, 444, 34, 8, 42, 98, 211, 450, 100, 10, 62, 132, 116, 274, 763, 50, 22, 73, 244, 792, 92, 1502, 5433, 27, 17, 41, 117, 77, 206, 540, 1315
Offset: 0

Views

Author

Thomas Scheuerle, Jul 12 2021

Keywords

Comments

Absolute differences of order 1 means k1 = {abs(a(0)-a(1)), abs(a(1)-a(2)), ...} and of order 2: k2 = {abs(k1(0)-k1(1)), abs(k1(1)-k1(2)), ...}.
If we did not allow any duplicated values in k1, k2, ..., kn we would get a case where all k1 .. kn would be the same sequence and this sequence would be s(n) = 2^n. In the case of this sequence k1..kn are not equal but there is still a remarkably strong correlation between a(n), k1(n) and kn(n).
It appears that if a(n) = p then the greatest possible number a(n-1) would be 1 + p + 2^p. If true this would have the consequence that this sequence would be a permutation of the positive integers, because in the case of a(n) = p, n could then not be greater than p + 2^p.
It appears that the logarithmic plot of this sequence consists of straight-line segments attached to each other; this indicates intervals of exponential growth.
If this sequence is a permutation of positive integers, will all k1 .. kn then contain all positive integers at least once?

Examples

			a(0..9) = {1,2,4,7,12,3,9,20,40,36} no duplicates.
k1(0..9) = {1,2,3,5,9,6,11,20,4,31} no duplicates.
k2(0..9) = {1,1,2,4,3,5,9,16,27,10} one duplicate 1.
k3(0..9) = {0,1,2,1,2,4,7,11,17,3} two duplicates 1 and 2.
		

Crossrefs

Programs

  • MATLAB
    function a = A346268(max_n)
    a(1) = 1;
    t_min = 2;
        for n = 1:max_n
            t = t_min;
            while ~isok([a t])
                t = t+1;
            end
            a = [a t];
            if t == t_min+1
                t_min = t+1;
            end
        end
    end
    function [ ok ] = isok( num )
        ok = (length(num) == length(unique(num)));
        dnum = num;
        if ok
            for k = 1:(length(num)-1)
                dnum = abs(diff(dnum,1));
                ok = ok && ((length(dnum) - length(unique(dnum))) < k);
                if ~ok
                    break;
                end
            end
        end
    end