A346290 Numbers k = s * t such that reverse(k) = reverse(s) * reverse(t) where reverse(k) is k with its digits reversed. A single-digit number is its own reversal and neither s nor t has a leading zero. No pair (s, t) has both s and t palindromic or single-digit.
24, 26, 28, 36, 39, 42, 46, 48, 62, 63, 64, 68, 69, 82, 84, 86, 93, 96, 132, 143, 144, 154, 156, 165, 168, 169, 176, 187, 198, 204, 206, 208, 224, 226, 228, 231, 244, 246, 248, 252, 253, 264, 266, 268, 273, 275, 276, 284, 286, 288, 294, 297, 299, 306, 309
Offset: 1
Examples
a(1) = 24 = 2 * 12 and 2 * 21 = 42 (which is 24 reversed); a(2) = 26 = 2 * 13 and 2 * 31 = 62 (which is 26 reversed); a(3) = 28 = 2 * 14 and 2 * 41 = 82 (which is 28 reversed); a(4) = 36 = 3 * 12 and 3 * 21 = 63 (which is 36 reversed); etc.
Programs
-
Mathematica
q[n_] := AnyTrue[Rest @ Take[(d = Divisors[n]), Ceiling[Length[d]/2]], (# > 9 || n/# > 9) && !Divisible[#, 10] && !Divisible[n/#, 10] && (!PalindromeQ[#] || !PalindromeQ[n/#]) && IntegerReverse[#] * IntegerReverse[n/#] == IntegerReverse[n] &]; Select[Range[2, 300], q] (* Amiram Eldar, Jul 13 2021 *)
-
Python
from sympy import divisors def rev(n): return int(str(n)[::-1]) def ok(n): divs = divisors(n) for a in divs[1:(len(divs)+1)//2]: b = n // a reva, revb, revn = rev(a), rev(b), rev(n) if a%10 == 0 or b%10 == 0: continue if (reva != a or revb != b) and revn == reva * revb: return True return False print(list(filter(ok, range(310)))) # Michael S. Branicky, Jul 13 2021
Comments