cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A346291 a(0) = 1; a(n) = (1/n) * Sum_{k=2..n} (binomial(n,k) * k!)^2 * a(n-k) / k.

Original entry on oeis.org

1, 0, 1, 4, 54, 976, 27050, 1037016, 53040344, 3494603904, 288738690552, 29267185135200, 3573720291756912, 517691602686711168, 87813773085480166608, 17246816939881695262656, 3883816372280829757142400, 994217196872849143760818176, 287129874355801742457562921344
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[(Binomial[n, k] k!)^2 a[n - k]/k, {k, 2, n}]; Table[a[n], {n, 0, 18}]
    nmax = 18; CoefficientList[Series[Exp[PolyLog[2, x] - x], {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = exp( polylog(2,x) - x ).
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp( Sum_{n>=2} x^n / n^2 ).
Showing 1-1 of 1 results.