A346298 a(n) is the smallest nonnegative number not in a(0..n-1) such that the sequence a(0..n) forms the starting row of an XOR-triangle with only distinct values in each row.
0, 1, 2, 4, 3, 7, 5, 8, 16, 6, 10, 17, 13, 24, 18, 32, 22, 9, 40, 21, 28, 11, 35, 45, 64, 20, 31, 68, 23, 36, 65, 14, 128, 33, 26, 56, 61, 75, 19, 129, 77, 102, 92, 46, 121, 147, 190, 58, 119, 67, 200, 78, 139, 38, 25, 96, 256, 49, 76, 138, 34, 66, 265, 207, 184, 268
Offset: 0
Examples
0 1 2 4 3 7 5 8 16 ... <-- sequence \ / \ / \ / \ / \ / \ / \ / \ / a(0),a(1),a(2),... 1 3 6 7 4 2 13 24 ... <----------+ \ / \ / \ / \ / \ / \ / \ / | 2 5 1 3 6 15 21 ... <-+ 2nd row is \ / \ / \ / \ / \ / \ / | a(0) XOR a(1), 7 4 2 5 9 26 ... | a(1) XOR a(2), \ / \ / \ / \ / \ / | a(2) XOR a(3), 3 6 7 12 19 ... | etc. \ / \ / \ / \ / | 5 1 11 31 ... | \ / \ / \ / | 4 10 20 ... | \ / \ / | 14 30 ... 3rd row is \ / (a(0) XOR a(1)) XOR (a(1) XOR a(2)), 16 ... (a(1) XOR a(2)) XOR (a(2) XOR a(3)), etc. We show why a(2^n) = A345237(2^n) by reproducing the same process with a randomly chosen set of octonion units: {e0,e1,e2,e5,e6}. XOR is replaced by multiplication. e0 e1 e2 e5 e6 \/ \/ \/ \/ e1 e3 e7 -e3 \/ \/ \/ -e2 -e4 -e4 \/ \/ -e6 -e0 \/ e6
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..7448
- Thomas Scheuerle, Triangle based on n = 0..149, drawn as colored surfaces bitwise for bit 0-7. This shows interesting Sierpinski-like structures.
- Thomas Scheuerle, Triangle based on n = 0..149, colored by number.
- Thomas Scheuerle, Triangle based on n = 0..149, colored by parity. Interestingly the amounts of red and green are approximately equal.
- Rémy Sigrist, C++ program.
Programs
-
MATLAB
function a = A346298(max_n) a(1) = 0; for n = 1:max_n t = 1; while ~isok([a t]) t = t+1; end a = [a t]; end end function [ ok ] = isok( in ) ok = (length(in) == length(unique(in))); x = in; if ok for k = 1:(length(x)-1) x = bitxor(x(1:end-1),x(2:end)); ok = ok && (length(x) == length(unique(x))); if ~ok break; end end end end (C++) See Links section.
Formula
a(2^n) = A345237(2^n).
a(2^m + 2^n + 2^p + ...) = A345237(k) XOR A345237(k - 2^m) XOR A345237(k - 2^n) XOR A345237(k - 2^p) XOR A345237(k - 2^m - 2^n) XOR A345237(k - 2^m - 2^p) XOR A345237(k - 2^m - 2^n - 2^p) XOR ..., k = 2^m + 2^n + 2^p + ... .
Sum_{k=0..n} a(k) <= Sum_{k=0..n} A345237(k).
( Sum_{k=0..n} a(k) + Sum_{k=0..n} A345237(k) )^0.4202... < n and > n - 30 at least for n < 500.
Comments